Hemangioma, Aneurysmal Bone Cyst, Unicameral Bone Cyst, Giant Cell Tumor, & Langerhan’s Cell Histiocytosis

Eric Mascard
Necker University Hospital, 75015 Paris
Institut Gustave Roussy Villejuif, 94805 Cedex
Clinique Arago, 75014 Paris, France
Introduction

• Hemangioma, Aneurysmal Bone Cyst, Unicameral Bone Cyst, Giant Cell Tumor, Langerhan’s Cell Histiocytosis:
• What do they have in common?
 – They are at the end of the pathology books
 – Most are of undefined nature
• Impossible to treat in 15 minutes....

So what’s new ????
Hemangioma

- Hemangioma of bone
 - Benign, extremely common, seldom symptomatic, found in 10% of subjects on spine autopsy
 - Any age, peak in the 50, slightly more female
 - Vertebra > skull > long bones > Others
 - Capillary, venous, cavernous, sclerotic hemangioma, or angiomatosis
 - Made from well formed mature vessels of different calibers
 - Positive for vascular markers (CD31, CD34, ERG & FLI-1)
 - Usually not to be biopsied or resected

Vascular bone tumors: a proposal of a classification based on clinicopathological, radiographic and genetic features.
Hemangioma

- Hemangioma of bone
 - Some are painful
 - To distinguish from usual back pain
 - Embolization
 - Cementoplasty
 - Some look not like hemangiomas
 - Biopsy
 - Embolization
 - Cementoplasty
- Surgery exceptionally
 - Decompression
 - Osteosynthesis (Fracture)
Hemangioma

- Epithelioid hemangioma
 - Occasional bone destruction with soft tissue involvement
 - Locally aggressive, 10% local recurrence rate, 3% lymph node involvement. No distant metastases.
 - Male slightly > female, young adult
 - Capillary or venous sized vessels lined by epithelioid endothelial cells.
 - Positive for vascular markers (CD31, CD34, ERG, FLI-1) ± Keratin, EMA.
 - To be differentiated from epithelioid hemangioendothelioma (malignant with a specific translocation WWTR1/CAMTA1 in FISH)
 - Surgical treatment is endolesional excision after embolization or resection

Epithelioid hemangioma of bone and soft tissue: a reappraisal of a controversial entity
Unicameral Bone Cyst

• WHO 2013 :
 – Simple bone cyst or unicameral bone cyst (UBC) are lytic benign bone lesions, of undetermined nature.
 – Intramedullary cavity filled with serous or sero-sanguineous fluid, usually unilocular
 – UBC can involve all skeleton but usually the long bone metaphysis and primarily proximal humerus and femur
 – Unique

• Pathogenesis
 – More a dysplastic lesion than a real tumor
 – Impairment of venous blood circulation in cancellous bone
 – Bone resorption by increased blood pressure and high concentration of inflammatory proteins

• Epidemiology
 – Very frequent, male predominance
 – 85% of patients are aged 10 to 20
Unicameral Bone Cyst

- Clinical presentation
 - Often asymptomatic
 - X-ray for other reason (Trauma, spine)
 - Pathological fracture
 - The most frequent
 - Pain, limping
 - Fissuring of the cyst
Unicameral Bone Cyst

• Imaging:
 – Nothing new....
 – Usually characteristic
 – The fallen fragment sign
 – The rising bubble sign
 – Cystography

 – But some look like ABC
Unicameral Bone Cyst

• Diagnosis:
 – Macroscopy
 • Usually characteristic
 • More difficult if fractured

 – Histology
 • Characteristic if a whitish membrane is found on curettage
 • Difficult in fractured UBC, showing aneurysmal changes
Unicameral Bone Cyst

• Prognosis
 – Spontaneous involution in adult
 – No malignant degeneration
 – Growth disturbance is rare
 – Fractures
 • Femoral neck (risk of necrosis)
 • In young children
 • If close to the physis, multi-locular
 • CT : evaluation of cortex thickness
Unicameral Bone Cyst

• Surveillance
 – In asymptomatic cases with no risk of fracture

• Treatment:
 – Nothing will be effective in 100% of cases
 – Choose the less aggressive and less expensive methods
 – Corticosteroid injections: “an old trick that still works”

Unicameral Bone Cyst

• Methyl prednisolone injection
Unicameral Bone Cyst

- Surgery: when there is a risk of fracture......
Unicameral Bone Cyst

• Surgery:
 - Curetage, perforation, filling with bone substitute
 - Osteosynthesis according to localization and age
Aneurysmal Bone Cyst

• WHO 2013 : Benign bone lesion of undetermined neoplastic nature, locally aggressive

• There are several types of ABC :
 – The primitive ABC, or classic ABC :
 • Expansive and hemorrhagic tumor
 • Formerly considered as a reactive lesion
 • It is a true neoplastic lesion with a characteristic translocation (USP6 rearrangement in chromosome 17)
 • The diagnosis must be assessed by a biopsy because a telangiectatic sarcoma can mimic an ABC (no USP6 rearrangement)
Aneurysmal Bone Cyst

– The secondary ABC
 • Represents 30% of ABC and has no translocation.
 • It is developed in reaction to another lesion, usually benign to be looked for on imaging for biopsy
 • GCT, chondroblastoma, osteoblastoma, fibrous dysplasia....
 • It should be called with the name of the lesion (for example GCT with aneurysmal changes)

– The solid ABC or giant cell reparative granuloma
 • Perhaps a healing classic ABC

– Soft tissue ABC
 • Rare, characteristic USP6 translocation

Aneurysmal Bone Cyst

• Epidemiology
 – Quite rare (1.4 /1 000 000 per year)
 – Most patients are 10 to 20 year old
 – Rare after 30 and exceptional after 50
 – Usually unique

• Localization
 – Long bones (67%), distal femur > tibia > humerus > fibula
 – Spine (15%): posterior arch, lumbar > cervical > thoracic
 – Pelvis (9%).
 – Others bones...
Aneurysmal Bone Cyst

— Clinical presentation
 • Pain
 • Swelling
 • Rarely pathologic fracture
 • Spine
 — Wry neck
 — Stiff and painful scoliosis
 — Neurologic symptoms
Aneurysmal Bone Cyst

- Imaging: X-ray
 - ABC are metaphysal, excentrated, bulging, containing liquid
 - May develop in all bones of the skeleton
 - Apparent multiple septa
 - ABC could be aggressive lesions with a risk of bone destruction.
Aneurysmal Bone Cyst

• Imaging
 – In MRI, the liquid level image is usual on axial in T2 sequence after rest of the patient
 – Septa appear enhanced by gadolinium injection
 – Characteristic in case of multiple fluid levels filling completely the lesion
Aneurysmal Bone Cyst

- Solid component in the tumor?
- MRI, cystography
Aneurysmal Bone Cyst

• Biopsy
 – Mandatory to eliminate a telangiectatic sarcoma or an associated tumor (oriented by imaging)
 – Percutaneous (Core biopsy) or preferably surgical
 – « curopsy »
 – Supposed to formally differentiate ABC and UBC ...
 • Blood on aspiration could be a bleeding UBC
 • Histology is very difficult in case of fractured UBC (showing aneurysmal changes)
 – In spine could be very hemorrhagic (embolization ?)
Aneurysmal Bone Cyst

• Histopathology
 – Blood filled spaces with no endothelium, no muscular or elastic fibers
 – Connective tissue septa with osteoclast-like giant cells and reactive woven bone
 – Characteristic fibrochondroid matrix, deeply calcified and blue

Aneurysmal Bone Cyst

- Differential diagnosis: unicameral bone cyst
 - Same population, same localization, same X ray....
 - Curopsy could be useful
Aneurysmal Bone Cyst

- **Telangiectatic osteosarcoma**
 - Biopsy is mandatory
 - Very confusing
 - Atypical cells and mitoses
 - Irregular osteoid matrix
 - No USP6 mutation
Aneurysmal Bone Cyst

• Differential diagnosis: giant cell tumor
 – Exceptional in children
 – More epiphyso metaphysyal
 – High expression of P63 and H3F3 A mutation
 – Possibly associated

7 y ≠ GCT

ABC or GCT ?
Aneurysmal Bone Cyst

• Evolution
 – 3 groups of variable evolution:
 • Quiet, active and aggressive
 – No malignant transformation (excepted after radiotherapy)
 – Some will heal spontaneously
 – Possible growth disturbance or severe bone destruction
 – Need for quick diagnosis and therapy
Aneurysmal Bone Cyst

• Treatment
 – Observation
 • After biopsy (4 to 8 weeks)
 • If the diagnosis is certain
 • Not potentially complicated lesions (spine, or fracture)
 • Spontaneous healing is possible....
 – Other treatments
 • 15 to 44 % local recurrence
 • Less aggressive techniques if possible
Aneurysmal Bone Cyst

• Treatment
 – Methyl prednisolone injection
 • Contra indicated = possible stimulation of the lesion
 – Radiotherapy
 • It works....
 • Risk of malignant transformation
 • Contra indicated (excepted in some inoperable spine tumors)

– Selective embolization
 • In spine & sacral lesions curative (alone) or preoperatively

Aneurysmal Bone Cyst

- **Treatment**
 - Intra lesional injections
 - Demineralized bone matrix, calcitonin, bone substitutes, bone marrow etc.....
 - Nothing widely accepted and proven
 - Doxycyclin
 - Many injection (up to 10) could be necessary
 - Useful in ABC close to physis, spinal cord, nerves

Percutaneous Doxycycline Treatment of Juxtaphyseal Aneurysmal Bone Cyst.
Aneurysmal Bone Cyst

- Treatment
 - Intralesional sclerotherapy
 - Ethibloc®
 - 70 à 94% healing but no more available
 - Polidocanol (Aetoxysclérol®)
 - 3 injections in average
 - Same efficiency than intralesional surgery with adjuvants
 - Less complications than Ethibloc®
 - Sclerotherapy with alcohol
 - Few complications, efficient, simple and cheap
 - Possible in sacrum
 - 1 to 4 injections, 10% failures

Aneurysmal Bone Cyst

- Alcohol sclerotherapy
Aneurysmal Bone Cyst

• Alcohol sclerotherapy

 – Pr Brunelle. Necker hospital, Paris
Aneurysmal Bone Cyst

• Treatment
 – Cryoablation
 • Per cutaneous, interventional radiology
 • Spine lesions
 • Cementoplasty after cryoablation
 • Or cryoablation after selective embolization

Aneurysmal Bone Cyst

• Medical treatment
 – Zolendronic acid
 – Denosumab

– In spine and sacral lesions: can avoid dangerous surgery
– In case of recurrence after treatment
– Still in evaluation but definitive healing published (≠ GCT)
Aneurysmal Bone Cyst

- Treatment: Is there still a place for surgery?
 - Large resection
 • Few local recurrence
 • Complications not justified in a benign condition
 - Marginal or subperiosteal resection
 • In very aggressive lesions?
 • Less recurrences than curettage...
 • After failure of sclerotherapy
 - Curettage ???
 • If curopsy
 • Otherwise better to do sclerotherapy (Polidocanol or alcohol)
 - Large spinal and sacral lesions: Denosumab or surgery in case of fracture after pre operative embolization.

Aneurysmal Bone Cyst
Aneurysmal Bone Cyst

• Acute paraplegia in a pregnant woman:
 – Ceasarean section
 – Decompression + fixation in emergency
 – Denosumab post operatively
Giant Cell Tumor

- WHO 2013: Benign bone tumor, locally aggressive
 - Less than 2% become malignant and some gives lung mets
- Relatively frequent
 - 5% of all bone tumor and 20% of all benign bone tumors (but 20% of all bone tumors in India and China)
- Arises in patient with closed physis
 - Very rare in children
 - Developed from the metaphyseal side of the growth cartilage then comes to the epiphysis
 - Distal femur, proximal tibia, pelvis, proximal humerus, sacrum, distal radius (very rare in skull scapula & diaphysis)
Giant Cell Tumor

- Pathogenesis remains unclear
 - Reactive response to vascular insufficiency: deep hypoxia and acute hemorrhage
 - Stimulation of osteoblast-like cells, monocytes recruitment and osteoclast differentiation then inducing tumor formation.
 - High percentage of GCT cells have chromosomal changes (without loss of genetic material)
 - GCT with complex clonal karyotypes have highest risk for aggressive behavior
Giant Cell Tumor

• Clinical features
 – Pain, pathological fracture, swelling
 – Young adult

• Radiology
 – Lytic bone lesion, usually characteristic
 – Growing to the epiphysis
 – To differentiate from other epiphyseal lesions
 • Chondroblastoma
 • Clear cell chondrosarcoma
 • Subchondral degenerative cysts

• Biopsy is mandatory
Giant Cell Tumor

• Histology:
 – Mononuclear cell proliferation of primitive mesenchymal stromal cells
 – RANKL expression in tumor cells
 – Macrophages and osteoclastic giant cells
 – P63 expression
Giant Cell Tumor

• New diagnostic tool
 – Molecular biology: Histone 3.3 mutation
 – H3F3 A gene in osteoblastic tumors
 • GCT (49/53 = 92 %) => Mutations G34W/L
 – H3F3 B gene in cartilaginous tumors
 • Chondroblastoma (73/77 = 95 %) => Mutations K36M
 – No H3F3 mutation in Chondromyxoid fibroma and chordoma

Giant Cell Tumor

• Prognosis
 – Local recurrence in 10 to 30%
 – Lung metastases or implants
 • In 2%, 3-4 years after diagnosis
 • Mainly with distal radius
 • CGT with intravascular growth or emboli
 • Some will disappear, some will kill the patient
 – Malignant transformation
 • After radiotherapy
 • Role of denosumab?
 • Or misdiagnosis (giant cell osteosarcoma, malignant GCT)?
Giant Cell Tumor

• Local treatment
 – Surgery
 • Aggressive curettage, high speed burr, pulsed lavage
 • Adjuvant therapy have no proven efficiency (phenol, liquid nitrogen, argon laser)
 • Thermic effect of PMMA cement used in filling
 • Osteosynthesis only if needed
 • En bloc resection in recurrent lesions or expendable bones such as rib, fibula, iliac wing)
 – Radiation therapy
 • In some spinal recurrent lesions ?

• Resection of lungs mets
Giant Cell Tumor

- **Medical therapy**
 - Based on the TCG biology (RANKL activation of osteoclasts)
 - Osteoclasts Inhibition
 - Diphosphonates (Zometa)
 - Anti RANKL antibody = Denosumab
 - Indication for Denozumab to be discussed in MDT
 - When surgical treatment is not possible
 - When surgical treatment would be mutilating
 - In metastatic GC tumor
 - Locally aggressive and recurrent tumors (very effective)
 - With Ca and D Vitamin supplementation, Phosphorus and Ca Monitoring, and dental panoramic radiograph

Giant cell tumors of the spine: has denosumab changed the treatment paradigm?

GSF-Geto Groupos recommandations (Chevreau C, Dumaine V, Brouchet A, Missenard G) 2016
Giant Cell Tumor

- Many concerns with Denosumab
 - Recurrence after end of treatment
 - When to stop?
 - General complications
 - Difficult to perform a curettage after Denosumab
 - Could help to perform en bloc resection?
 - Induction of malignant transformation?
 - Some teams are already using it less

Langerhan’s Cell Histiocytosis

• It is known that:
 – Letterer-Siwe disease (multi organ involvement)
 – Hand-Schüller-Christian (rash, bone lysis, diabetes insipidus)
 – Eosinophilic granuloma
 – Have the same histology: histiocytosis X (Lichtenstein 1953)
 – Have common features with the epidermal Langerhans cells as the Birbeck granules in electron microscopy: Langerhan’s cell histiocytosis

• Histiocytosis X or Langerhans Cell Histiocytosis (LCH) is characterized by a proliferation in various tissues of dendritic cells of Langerhans type expressing several phenotypic markers including CD1a and protein S100.
Langerhan’s Cell Histiocytosis

• Formerly considered as a reactive process

• Now considered as a neoplastic proliferation
 – Recurrent BRAF (V600E) mutations are found in 60% of LCH (also found in melanoma)
 – The LCH is due to a mutation in a myeloid precursor cell. The more immature the cell at time of the mutation, the greater chance for a more extensive disease: « Misguided myeloid differentiation hypothesis »

BRAF and MAP2K1 mutations in Langerhans cell histiocytosis: a study of 50 cases.
Langerhan’s Cell Histiocytosis

• Epidemiology
 – LCH affects 4 to 8 children per million and 1 to 2 adults per million each year
 – Less cases in black, more in Hispanic population
 – Higher risk of LCH in poor socio-economic circumstances and in crowded conditions
 – Most are diagnosed between September and February (Sweden)
Langerhan’s Cell Histiocytosis

• Clinical presentation
 – Highly variable from a self-healing bone lesion to a severe life-threatening multi-organ disease with 10 to 20% mortality.
 – In children the organs that are frequently involved are: firstly bone (75%), then skin (34%), lymph nodes, mastoids and ears, bone marrow, spleen and liver, lung, post-pituitary (diabetes insipidus) and lastly the gastro-intestinal tract.
 – In adults bone and lung (mainly in smokers)

• Different risk groups:
 – Low risk: Skin and bone (and lung)
 – High risk: Risk organs (spleen, liver, bone marrow)
 – Central nervous system: LCH neurodegenerative disease
Langerhan’s Cell Histiocytosis

• Orthopedic lesions
 – Pain, soft tissue mass, pathologic fracture (Vertebra plana)
 – Lytic bone lesions (Skull, femur, maxillary, pelvis, ribs...)
 – May mimic malignant bone tumors
 – Biopsy is mandatory (at the first onset)

Ewing sarcoma
Langerhan’s Cell Histiocytosis

• Initial Staging: patient referral
 – Pediatric oncology team
 – Specialized adult department (national experts)
 – Physical examination
 • Skin, mucosae, lung, spleen and liver
 – Laboratory
 • Complete blood cell count, liver function tests
 • Bone marrow biopsy and aspiration in young patients
 – Imaging
 • Skeletal survey or PET
 • CT of the head
 • MRI of the brain in case of neurologic involvement
Langerhan’s Cell Histiocytosis

• Treatment
 – Stratified on the extent of the disease.
 – MDT discussion (national experts)
 – Single system diseases in which the prognostic is usually excellent, require a minimal treatment (either no treatment or only local therapy)
 – The multi-organ diseases are usually treated with chemotherapy (weekly Vinblastine and steroids)
 – Mutation-specific targeted therapy is in development (BRAF inhibitors in tumors with mutation)
Langerhan’s Cell Histiocytosis

• Local treatment
 – Sometimes biopsy is sufficient
 – No surgical treatment in mechanically solid lesions (with chemotherapy) or vertebra plana
Langerhan’s Cell Histiocytosis

• Local treatment
 – Steroids injection
 – Curettage with or without grafting
 – Osteosynthesis
 – No radiation therapy
Conclusion

• In many of these lesions why do surgery?
 – Medical treatments and interventional radiology have so much progressed that surgery could be avoided in many of the above conditions....
 – Surgical complications could be devastating for the patient (and the surgeon...)

• Even in benign condition the approach becomes multidisciplinary
Conclusion

• What would you prefer for your child?